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The turbulence problem is formulated using the Wiener stochastic expansion. 
The expansion is useful for processes which are in some sense nearly normal, and 
can be used for non-linear non-Gaussian processes such as many turbulent fluid 
flows. Here we present the general formulation for statistically inhomogeneous 
and anistropic processes. 

The transfer term in the energy equation, or equivalently the third-order 
velocity correlation, forms a sensitive measure of the amount of non-Gaussianity 
present in real fluid flows. Experimental evidence shows that in many flows this 
component is small compared with the Gaussian part. It is shown that a homo- 
geneous and isotropic flow which has but a small non-Gaussian part possesses a 
distribution a t  one point which is Gaussian to terms of second order. The experi- 
ments suggest that immediately behind a grid in a wind tunnel the flow is very 
nearly normal. The non-Gaussian part grows at  a moderate rate, at least within 
the range of distance downstream (or decay time) available in the usual experi- 
ments. This growth is probably due to the relative increase in the amount of 
energy in the smallest eddies, which are non-normal. 

A necessary criterion for the validity of the zero-fourth-cumulant approxi- 
mation is suggested: the transfer term in dimensionless form should be small. It 
is shown that calculations using the zero-fourth-cumulant approximation have 
given negative energy spectra when this condition is violated, probably for the 
reason that the process is no longer nearly Gaussian. However, even when this 
condition is fulfilled, it is shown that that approximation must be corrected. 

It is suggested that the present theory is valid for quite large times of decay if 
initial energy spectra are chosen which are not too far from the actual physical 
values for fluid in turbulent flow. Equations are given for the next-higher-order 
term in a nearly normal approximation. The expansion is also used in $ 6  to 
describe turbulent mixing problems and is compared with the zero-fourth- 
cumulant approximation for these problems. Computational results are presented 
in 8 7 and compared with experiments by Stewart and Townsend. 

1. Introduction 
During the past few years we have attempted? to apply to turbulence 

problems some ideas (Cameron & Martin 1947; Wiener 1958) concerning the 
t. See Meecham & Siegel 1964; Imamura, Meecham & Siegel 1965; Siegel, Imamura & 

Meecham 1965; the first two papers will be cited here as papers I and 11. 
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representation of non-Gaussian non-linear processes. Saffman ( 1967) gives 
an interesting review of this and other recent theories. 

The expansion used here is built around a Gaussian process, sometimes called 
the white noise process. Non-Gaussian characteristics are represented by poly- 
nomial functionals of the basic process. It is known that in some important ways 
developed turbulence is nearly Gaussian (for instance, in developed turbulence 
the lower-order moments of one component of the velocity are related very 
nearly as they would be for a Gaussian process). It is also known that some 
moments (notably of derivatives of the velocity field and more generally of 
velocity differences) show deviations from their Gaussian values. We shall 
argue here on the basis of experimental evidence that for many characteristics 
the non-Gaussian part is small compared with the Gaussian part of the developed 
process. 

It is worth remarking that the formulation to be presented can yield only 
positive spectra (even for spectra of derivatives for instance) and can be shown 
to be a Galilean invariant. Calculations are given and compared with turbulence 
measurements. 

2. Review of the Wiener representation 
In  past work we have dealt mainly with the application of the representation 

to Burgers’ model equation. The general characteristics of the representation 
and its extension for the representation of vector processes have been treated 
previously in paper 11. It is worth reviewing and specializing the representation 
here for application to problems involving the Navier-Stokes equation, and 
related problems. 

The basic element in the representation is the white noise process. To gain some 
feeling for this basic element consider the following limiting operation. Begin 
with a scalar function, H f ) ( x ) ,  of a scalar variable defined as follows. Divide the 
x-axis into cells of width A. To achieve a representation of H t )  select its value 
independently in each cell, from a Gaussian distribution of variance A-l. Each 
member of the ensemble is a histogram; one member is shown in figure 1. 

The idealized process derived from Wiener’s work is obtained by allowing 
A + o  for the above functional; the process so obtained will be designated 
H(l) (x) .  We shall need to represent vector fields and accordingly assign a statis- 
tically independent process of this type for each Cartesian direction (at every 
point in space). The cells of figure 1 are replaced by volume elements A3 and the 
variance becomes A-3. Then we are led to consider H(l)(r) with the properties, 
following from the definitions, 

(2.1) 1 (HJ1)(r)) = 0, 

(Rjl)(r)Hp)(r’)) = &,,&(r - r’), 

with higher moments related as in a Gaussian distribution. A physical process 
can be represented by an integral 
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with the repeated index summed. As in many turbulence theories, a more com- 
pact notation is desirable. Here we shall sometimes adopt a notation (see paper 
11) 

and use a kind of generalized summation convention, writing for (2.2) 

@(r) = K$?(r, R1)H(l)(Rl). 

FIGURE 1. One member of the ensemble Hg). 

The repeated generalized variables R (and, below, X) in a single term are to be 
summed on a, and integrated over r ,  as in (2.2). Likewise let H@)(Bl) stand for 
Hz)(rl), etc. 

In  (2.2) K is a non-random function. The process u4, being a sum of independent 
Gaussian processes, is itself Gaussian. Further, almost every member of the 
ensemble of u’s is continuous for regular K.  The covariance of u is found, using 
PJ), 

(2.4) 

Evidently, even though the basic element of the representation is an idealized, 
irregular process, averages of physical processes can be quite regular. 

A statistically homogeneous process can be represented by choosing a kernel 
which is a function of the difference of its two arguments. In  such a case the 
covariance, for instance, becomes 

(u,(r)uj(r’)) = U $ ~ ( r - r ’ + r l ) U ~ ~ ( r l ) d r l .  (2.5) s 
We shall use the symbol U (in place of K )  for homogeneous processes. 

Consider the representation of non-Gaussian processes. For this purpose we 
define polynomial combinations of the white noise process in such a way that 
they are mutually statistically orthogonal (see paper 11). This could be done in a 

15-2 
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variety of ways, of course, but because of the Gaussian character of the basic 
process the most convenient functionals are based on the generalized Hermite 
polynomials. The first few are (including a zeroth-order, non-random function) 

(2.6) I H(O)(r) = 1, 

H@)(R,, R,) = H(l)(Rl)H(l)(R,) - 6(R,, R,), 
H3)(R,, R,, R3) = H(l)(R,) H(l)(R,)H(l)(R,) - H(l)(B1)S(R,, R3) 

- H(l’(Bz) S(B3, 22,) - H(1)(B3) &(El, R,) 
and similarly for higher orders. We define 

w,, R,) = &xlaao-l - r2). 

(H(m)H(m)) = 0 (m + n), (2.7) 

It is readily shown from the definitions that (on suppressing subscripts) 

showing the statistical orthogonality mentioned above. The quantities defined 
in (2.6) are vector generalizations of the corresponding scalar quantities given in 
paper I, (2.4), and specializations of the results for the Wiener-Hermite func- 
tionals given in paper 11. To represent a physical process, multiply the functionals 
of (2.6) by kernels and integrate in a way analogous to (2.2) [or (2.3)]. We have 

ui( r) = ?ii( r) + uil)( r) + ui2)( r) + . . . (2.8) 

@(r) = Kil)(r, Rl)H(l)(Rl), (2.3) 

u$)(r) = Ki2)(rY R,, Rz)H(2)(R,, R,), (2.9) 

with Tis the non-random, mean value of the velocity field and 

ui3)(r) = @)(I-, R,, R,, R,)H(3)(R1, R,, R3). 

An important consequence of the definitions (2.6) can be seen. The higher-order 
functionals H(3),. . . are symmetric in all of their arguments, Ri. Consequently 
we can without loss of generality assume that K@), Kt3), . . . are similarly symmetric 
in the corresponding arguments (r excepted), e.g. 

(2.10) K(i20tlaz(r’ r1, r2) = Ki21& r2, r1). 
If the velocity field is known to be statistically homogeneous, we have 

uL1)(r) = U$?)(r- rl)HfJ(rl)drl, s 
U$tiaz(r- r,, r-  rz)HL:Lz(rl, r,)drldr2. (2.11) 

(It does not seem desirable to continue the compact notation (2.3) for such 
problems.) From the type of symmetry in (2.10) it follows that u(”) are similarly 
symmetric, e.g. U(i2a)laz(rl, r,) is symmetric in subscripts 1 and 2. 

The representation described above is appropriate to random initial value 
problems, of the type approximated by wind-tunnel, wake, and boundary- 
layer applications. For problems involving random forcing functions, the 
representation should be extended to include random characteristics in time 
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(in the above, time is an implicit parameter). For this purpose each point in 
space and time is to have an independent Gaussian process 'attached' with 
variance A-3(At)-1 where At is the time increment corresponding to the space 
increment A.? The basic process is then Hi1)(r,  t )  with properties corresponding 

(H$"(r,t)) = 0, 

(Hi1)@, t)H$')(r', t ' ) )  = 6ij6(r - r')6(t - t ' ) .  

to  (2.1), 

(2.12) 1 
The process of (2.2) and (2.3) is generalized, 

uil)(r, t )  = Ki1)(r, t ;  T,, T,) H(l)(T,, T,) 

= s s s sA~~~( r , t ; r , , r , ,H~~( r , ,  t,)dr,df, (2.13) 

and similarly for higher-order terms, with T, representing the set of quantities, 

T, = {ctl,rl,tl}, etc. (2.14) 

The process can be made statistically stationary by assuming that time appears 
in K(") as a difference variable in a way analogous to (2.11). 'In this paper we shall 
usually restrict attention to initial value problems, decaying turbulence. 

3. Development of the dynamics using the functionals 
We have up to now been considering the kinematics of processes. To deter- 

mine the kernels we must of course use the dynamics, or more generally the 
equations governing the process. To continue, we substitute (2.8) in the equation 
of motion. For the first application of the theory consider incompressible viscous 
fluid flow. We use a (continuous) analogue of Kraichnan's (1959) formulation. 
Define the Fourier transform of the velocity field 

u,(k) = eak*rui(r)dr s 
and take the transform of the Navier-Stokes equation to find after manipulation 

ui(k)  = Qi(2~) -~4 j , (k )  uj(k-k')u,(k')dk'+fi(k) (3.2) s 
with 

Here and often below the dependence on time is implicit. Note that piji and 
Pj, are symmetric in ( j ,  I )  and that 

kiPij(k) = kiPijz(k) = 0. (3.5) 

In  (3.2) fi is the Fourier transform of the forcing term (per unit mass), if it is 
present. To continue this problem we represent u by its stochastic expansion 
(2.8) [and f by its corresponding series, with known kernels 3'(m) replacing the 

t For simplicity we suppose that the random initial (and usually independent) transients 
.have died out. 
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unknown En) of (2.3) and (2.9)]. We here specialize to a decaying process, 
f = 0;  the initial values of the field are assumed to be random. Development of 
the equations governing the various, needed kernels is now straightforward. 
The series (2.8) is substituted in (3.2). The quadratic, non-linear term gives 
products of functionals which can in turn be represented by series of the func- 
tionals themselves using results of paper 11. Once the equation is written in 
terms of linear expressions in the functionals, the statistical orthogonality 
represented by (2.7) is used and the coefficients of tihe corresponding terms are 
equated.t We give the equations [except (3.6), which is more general] through 
terms of third order in the functionals; this is farther than the expansion need 
be carried for most applications. The equations may be applied to statistically 
inhomogeneous or anisotropic flows (for instance shear flows). It is emphasized 
that the kernels Kcn) are symmetric in any interchange of their last n variables; 
it  is important that initial values of the kernels also have this symmetry. We 
represent the transform of the mean flow by ali( k) and find, for the force-free case 
(f = 01, 

( g + v k 2 )  ;El,(k) = &(27r)+f&(k). ;il,(k’)%,(k-k’)dk’ (S 
+ 5 n! /Kin)(.’; R,, . . . , R,)Kin)(k - k ;  R,, . . . , R,) dk‘ . (3.6) 

In  (3.6) we have included all the non-linear terms. The result follows easily from a 
use of the statistical orthogonality. If the process is laminar, the series vanishes, 
and we have (3.2). The Q)(k;R ,...) is the Fourier transform of Kp)(r, R,...). 
Continuing to higher orders we have 

n=l  I 

(:+ vk2) Kf)(k; R,) = i(2n)-3J&.l(k). (/dk’[?ij(k’)Kj”(k- k’; R,) 

+ 2Kf)(k‘; R;) Kk2)(k - k‘; R,, R;) 

+ 6 K ~ ) ( k ; R ; , R ~ ) K ~ 3 ) ( k - k ‘ ; R , , R ; , R ; ; ) +  ... , (3.7) 
1) 

I 

(:+ vk2) Ki2) (k; R,, R,) = +i(2n)-31&l (k) . dk’[2Ej(k’) Ki2)(k - k’; R,, R,) (s 

(1 

+Ky)(k’; R,)Kf’(k- k’; R,) 

+ 4Ki2)(k’; R,, R’)Ki2)(k - k’; R,, R’) 

+ SK$’)(k’; R’)Kj3)(k - k’; R,, R,, R’) + . . .] , (3.8) 

(4 + vk2) Ki3)(k; R,, R,, R3) = i ( 2 ~ ) - - ~ G ~ ~ ( k ) .  dk’[E, (k’)Kf3)(k- k‘; R,, R,, R3) 

++Q123{KY)(k’; R,)K12’(k- k’; R,, RJ} 

+ (3!/3)Q123(K‘,2)(k’;R1,R’)Kf3)(k- k’;R2,R3,R’)}]], (3.9) 

t For this result, it is necessary that the coefficient functions be symmetric in their 
arguments. 



The Wiener-Hermite expansion for nearly normal turbulence 23 1 

with Q123 (F(R1, R2, R3)} 
- - ~,pzaa(r l ,  r2, r3) + TZza3a1(r2, r3, r1) +3&apg(r3, r1, r2). (3.10) 

An interesting consequence of the formulation used in paper I1 can be seen in 
the structure of these equations: the contribution to a given order of kernel of 
the non-linear (quadratic) term is analogous to the corresponding behaviour of 
Hermite polynomials. For instance, the contribution to the fist-order term 
[right side of (3.7)] comes from the product of the zeroth with the &st, the first 
with the second, the second with the third, etc. In  general there will be a contribu- 
tion to a given order if the given order lies between the sum and the difference 
of the orders on the right side and has the same parity as the sum (or difference). 
There would be similar, though more complicated, correspondences for higher- 
order (for instance, cubic) non-linearity. 

Consider the effect of the requirement of incompressibility. The divergence of 
the expansion (2.8) must vanish for every member of the ensemble. If we use 
the statistical orthogonality of the functionals (2.7), together with the symmetry 
of the kernels $3,) in their last n arguments, we find that incompressibility leads 
to the requirement 

k,Z,(k) = 0 

and k,Kc,"'(k,R,, ..., R,) = 0 (n 2 1). 

We specialize now to statistically homogeneous turbulence. To do this let the 
kernels be functions of the difference variables as in (2.11) and let U = 0. It is 
convenient to d e h e  the multiple transform of the kernels Ucn) 

U$;...an(kl, . . . ,k, ) = J . . . J , exp [i(k,. rl + . . . + k, . r,)] 

x Ugi...,n(rl, ..., r,)dr (3.11) 

The relation to the previous kernels is 

Kin'( k;  R,, . . . , R,) = ( %T)""+~ J ...J 6(k-k,- ... -k,) 
n 

x exp [i(k, . r1 + . . . + k, . r,)] Ug;...., (k,, . . . , k,) dk, . . . dk,. (3.12) 

We know the kernels $3,) are symmetric under any interchange of their last n 
variables, R,, R,, . . . . From (3.12), taking the (3n)th order inverse Fourier trans- 
form, we see that Un) are symmetric in the interchange of any pair of kl,a,; 
k2,tC2; etc. Also from (3.11) we see U(,) has the same symmetry in r's. Again 
it is important that initial values of U(n) likewise have this symmetry. The 
equations for statistically homogeneous processes (through terms of third order) 
are obtained by substituting (3.12) in (3.7)-(3.9) and simplifying, 

(:+ vk2) U$z(k) = 2i(2n)-3f$,,(k) Uf)(kt)Ub2p(k, - k')dk' s 



i( 27~)-~l&( k, + k,) 1 2 s  U$LIE(klr k’)Uf$(k2, - k’)dk’ 

(3.14) 

(3.15) 

Let (3.138) and (3.148) stand for the simplified, lowest-order equations obtained 
by dropping terms in the brackets { 1 in (3.13) and (3.14) above. 

The kernels 7Jn) above satisfy the reality condition (they are the transforms 
of real functions), n 1, 

u(.n)* %a l...a,(kl, **. ,kn) = U$Zi...an(-kl, ..., -kn) (3.16) 

and the incompressibility condition 

(k1+ * a *  +k, )aUc,“,,l ... a,(kl, *.*,kn) = 0. (3.17) 

Consider the consequences of assuming that the flow is substantially statisti- 
cally isotropic. The UCn) are isotropic tensors (see Batchelor 1953, pp. 42-3). 
Using this property and the reality condition (3.16) we find U(n) are pure real 
or pure imaginary according to whether n is odd or even. 

The combination of the requirements that the flow be statistically homogeneous 
and isotropic as well as incompressible gives 

U$)(k) = Ul(k)<j(k), (3.18) 

U$zla,(k(l), k@)) = ipi,(k(’) + k@)) . {q(k$kE!k$i + kf’k‘2’k‘2’) a1 a ,  

+Iqkg6, , ,  + k$paal)  + v3(k:paa1 + k p a a , )  + &(k$)kt;k!; + k‘,l’k‘a“lkc;)}, (3.19) 

with U, a real function and 5 real functions [of t ;  (k(1))2, (k(2))2 and k(l).k(2)]. 
There are similar, more complicated forms for the real function U$$,a,,,. 

We summarize the results so far and compare with some previous work. For 
shear flows and other statistically inhomogeneous flows consider (3.6)-(3.9). 
We can proceed in two ways. Erst, to emphasize connexions with previous 
efforts, consider a perturbation result. Sum (3.7), (3.8), etc., retaining terms of 
lowest order in the kernels. Let ul represent the sum of the fluctuations so (2.8) 
becomes 

We have, for (3.6), 
ui(r) = U i ( r )  +ui(r). (3.20) 

I ($ + vkz) U,(k) = &i(2n)-3pijl (k) { /dk’[G,(k’) Gl (k - k’) + u;(k’) u;(k - k’)] 

(3.21) 

(3.22) (:+ vk2) u;(k) = i(27r)-3Ejl(k) Z,(k- k’)u;(k‘)dk‘, s and 



The Wiener-Hermite expansion for nearly normal turbulence 233 

where by incompressibility k,Za = kauh = 0. Equations (3.20)-(3.22) are (the 
Fourier transform of) the usual perturbation equations. The last term of (3.21) 
is the Reynolds stress. 

In  the spirit of the present work, we might in a simple treatment first assume 
that the fluctuation is nearly Gaussian. Experiments support the view that at  
least certain characteristics of the flow have this property (see Townsend 1956, 
$7.6). Then let K(") = 0,n b 2. For (3.6), replace in (3.21), 

ui(k)uf(k-k') 3 k'; rl)Kfi)(k- k'; rl)dr,; (3.23) 
&. 

for (3.7), replace in (3.22), 
u;(k) + K$z(k; r,), (3.24) 

where K(l) satisfies the incompressibility condition 

k,K;z(k;r,) = 0. (3.25) 

Inhomogeneous flows can sometimes be regarded as locally isotropic. This 
provides a further simplification. Define the full transform of K(l), 

(3.26) 

This quantity becomes, using local isotropy and (3.25) (see Batchelor 1953, 

P. 431, Kf?(k'; k )  = pip (k') {A,  E'k: + + A ,  ki I&}; (3.27) 

here A, = Ai(k2,k"2,k'.k;t). 

Proudman & Reid (1954) have suggested that incompressibility is conveniently 
introduced by multiplying by Pzi as here. Further symmetry assumptions for 
special geometries are possible (circular jets, plane boundary layers, etc.). By 
(3.27) and the reality condition we see that A, are real. 

We collect results (and simplify) for statistically homogeneous and isotropic 
flows, (3.13)-(3.15). We suppose again that the process is nearly Gaussian 
(discussed in the next section), retaining U(l) and U@) in (3.138) and (3.148). 
Integrate the latter to find (time now being shown explicitly) 

U$21az(kli k2; t )  = Ui21aa(k,, k2; 0) ~ X P  {- ~ ( k l +  k212t} 

+ @P,y&k,+ '2) pyal(kl) p8az(k2) 

x / : U l ( k l , t f )  U,(k2,t')exp{-~(k,+k,)2(t-t'))dt'. (3.28) 

We have used the isotropic form (3.18). The function U, is real; the initial value 
of UOis pure imaginary and is symmetric under the interchange of the subscripts 
1 and 2. It is assumed that the process is initially isotropic. The third-rank tensor, 
U2), can be written in terms of the four generating scalars as in (3.19). Further- 
more, if the initial value of the second-order term is negligible, the term can be 
represented by a single scalar function; the tensor is of the form of the second 
term on the right side of (3.28). 
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Use (3.18) and sum (3.135) on its free indices to find 

(:+ vk2) U,(k, t )  = i(2n)-3Pail(k) Ul(h‘, t)P,B(k’)Uji,’8(k, - k‘; t)dk‘. (3.29) 

The equations (3.28) and (3.29) form the system appropriate, to lowest significant 
order, to the discussion of statistically homogeneous and isotropic turbulence 
in incompressible fluid. The various moments (correlations), skewness factors, 
etc., will be formed from U(l) and U@) in a way analogous to (2.5). 

s 

4. Extent of Gaussianity from experiments 
Consider statistically homogeneous and isotropic processes. First, we express 

the usual quantities of turbulence theory in terms of the kernels in the Wiener 
representation. For this purpose we need statistical expectations for special 
products of functionals [the general formula is given in paper 111. Then (see 

(H(l)(Rl) H(1)(R2)) = (H$t)(rl)H$t)(r2)) (4.1) 

= S(R,,R,), (4.2) 

(2.1)) 

(H‘1’(R1)H(1’(R2)H(2’(R3, R4)) = S(R,, R3)6(R,7 R4) R4)S(%, B3)‘ (4*3) 

From (4.2) and (4.3) and the usual definitions (Batchelor 1953) we have for the 
energy spectrum function 

E(k)  = El(k) +E,(k) ,  (4.4) 

El@) = 2(2n)-”2u;(k), (4.5) 

E2(k)  = 2(2n)-5rCZ UFi,(k, k-k)U$?$(k, k-k’)dk. (4.6) s 
Uland U2)are obtained by integrating (3.28) and (3.29). Thelongitudinalvelocity 
correlation (‘i a unit vector in the x-direction) 

The Gaussian contribution to the correlation is, using (4.5), 

The Gaussian part of the correlation tensor is also given in other form by (2.5).t 
The (lowest order) non-Gaussian part of the longitudinal correlation is found by 
substituting (4.6) for E in (4.8). A useful relation is found by manipulating the 
definitions, 

t We shall call El and E, the Gaussian and non-Gaussian energies, respectively. It 
should be emphasized that a representation can be chosen which gives a non-zero E,, 
even for a Gaussian process. This can be done through the use of a ‘measure-preserving 
transformation’ (see Wiener 1958). 
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An interesting consequence of these formulae [see (4.5) and (4.6)] is that the 
energy spectra are necessarily positive. This is a general property of the theory 
presented here, and applies to all other spectra, for instance the spectra of 
derivatives of the velocity field. 

Consider third-order velocity correlations. We write the usual definition 

&j,k (r) = <Ui(X)  U j ( X )  UL(X + r)), (4.10) 

then use (4.3) and the definition of the kernels U(?t) to find to lowest order (the 
purely Gaussian term vanishes, of course) 

J J  

+ UiL(r +r’) [U$(r”)UyLI(r’, r”) + U$(r”)UyLF(r’, r”)]}dr’dr”. (4.11) 

This triple correlation is closely related to the transfer term in the energy equa- 
tion as usually formulated. We shall discuss this formulation in more detail in 
the next section when we examine the zero-fourth-cumulant approximation. 

It is possible to calculate other characteristics to the lowest order using U, 
and U@). In  particular, for the present purpose, consider the dimensionless 
flatness factor. One fbds 

F.F. = ( u ~ ) / ( u ~ ) > ”  

= 3 + O( U(2)/Ul)2. (4.12) 

The deviation is second order in the non-Gaussian part. This result can be 
greatly extended. It is seen that odd moments of isotropic processes vanish for 
r+O. Such quantities are called one-point tensors and must be made up of 
Kronecker delta functions. There is no way to do this for odd-ranked tensors. 
Even-ranked tensors are of second order in the non-Gaussian contribution 
[see paper 111. We have the conclusion that the distribution at one point of a 
nearly normal process is normal to terms qf second order. The result uses isotropy; 
deviations from such a rule can indicate anisotropy. Note that the deviation of 
(4.12) from 3-0 would be proportional to the third-order functional. Thus, if the 
flatness factor is very near to 3, the indication is that the term cubic in the Gaus- 
sian white noise process (the third functional) is very small compared with the 
quadratic term (the second functional). Present experimental evidence is not 
really conclusive, but tends to indicate such a behaviour. 

Let us continue in more detail with a discussion of the relation to experimenh 
of this theoretical statement of the turbulence problem. The evidence in support 
of the view that turbulence is in some important ways nearly normal has been 
given by, for instance, Proudman & Reid (1954). Similarly it is well known that 
some characteristics exhibit non-Gaussian behaviour. In  general these latter 
involve differences, or derivatives, of field functions taken at  two points which are 
close together compared with the scale of the turbulence. The most recent and 
complete experiments of this kind are those of Frenkiel & Klebanoff (1965). 
It is reasonable to conclude from this evidence that the larger-scale characteristics 
are substantially normal, whereas for the smallest scales there is deviation from 
normality. Even in this range there remains the possibility that the substantial 
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non-Gaussianity is due to intermittency (see Batchelor 1953); i.e. that the small- 
scale process has non-zero amplitudes in restricted regions only and is essentially 
Gaussian there. This raises the possibility that the nearly normal treatment may 
be valid, if adjusted, for the very small-scale process. Our problem is to try, 
insofar as is at present possible, to determine the nature of the deviations from 
Gaussianity. For this purpose it is noted, see (4.11), that the triple velocity 
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FIGIJRE 2. x/M = 30. a, U = 620em/sec;M = 1 . 2 7 c m ; R ~  = 5300.0,  U = 620cmlaec; 
M = 5.08 em; Rnf = 21,200. x , U = 1240 cm/see; M = 5.08 em; RM = 42,400. (After 
Stewart 1951 .) 

correlation or the energy transfer term is well suited. This correlation is linear 
in the non-Gaussian part of the process, to lowest order [see (4.11)]. Consider the 
measurements by Stewart (1951) of 

h(r) = - ~(zc”;.;). (u2)-). (4.13) 

First, for a proper criterion one might remove the factor and normalize with 
(u:); on the other hand the triple correlation involves three terms (4.11) with 
K(2). We shall accordingly take for a criterion the heuristic relation 

h(r) N pm/K((”I (4.14) 

in dimensionless form, using the correlation length and the r.m.s. velocity 
fluctuation for scaling. The results obtained by Stewart for different Reynolds 
numbers are shown in figure 2. 

The most important point in the present context is that the non-Gaussian 
part of the velocity process is between 1+ and 24 yo ofthe Gaussian part by (4.14); 
certainly small enough to encourage the use of a nearly normal approximation. 
(It is of course true that the triple correlation goes to zero at  the origin for 
symmetry reasons, and consequently small-scale non-Gaussian characteristics 
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are somewhat suppressed.) An interesting sidelight is that, as the Reynolds 
number increases, the relative non-Gaussian part of the process in fact decreases. 
This is perhaps to be expected if we believe that the process is very nearly 
Gaussian when it is generated at  the grid and that, the more violent the process 
of generation, the more random the initial impulses. This remark has interest in 
the following context. It is sometimes thought that the flow is quite non-Gaus- 
sian at generation, and becomes Gaussian through the action of a (modified) 
central limit theorem even before final decay. From the viewpoint of the present 
theory and its relation to experiments another possibility is suggested. The 
process begins very nearly Gaussian and (we shall see) becomes somewhat less 
Gaussian as we proceed downstream. It should be remarked that if the process 
is thought to be initially quite non-Gaussian then the adjustment time is em- 
barrassingly short, of order one characteristic time of the process, as can be seen 
in figure 3. 
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6, z / M  = 120; x’ = x + 5 M  (After Stewart 1951.) 

To interpret these results in terms of dimensionless decay time, divide x /M 
by 20 (assuming the velocity fluctuation is 5% of the mean flow). 

Consider an interesting sidelight concerning the stochastic truncation dis- 
cussed in this paper. In  order to integrate the equations of motion r(3.135) and 
(3.14X) for instance] we must be given, in principle at  least, initial values for 
the first two kernels. These initial values can be determined for the first two 
kernels (first two terms in the expansion) from initial values of, for instance, the 
two-point and the three-point velocity correlations. Then all statistical charac- 
teristics for later times are determined in terms of just these two (initial) correla- 
tions. Higher-order truncations would involve successively higher-order initial 
correlations. Or, on the other hand, use of just the Gaussian term would imply 
that all characteristics were determined for all time by the initial value of the 
simple, second-order velocity correlation. 
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5. Discussion of the zero-fourth-cumulant approximation 
We begin by describing the use of the approximation following Proudman & 

Reid (1954). Suppose the Navier-Stokes equation (3 .2 ) ,  force-free, is multiplied 
by the velocity field at a second point and averaged. One obtains an equation 
connecting the second-order velocity correlation (2.5) with a third-order correla- 
tion (4 .10)  on the right side. Then the process is modified and repeated: the 
Navier-Stokes equation is multiplied by two field functions a t  two different 
points and averaged. We obtain an equation connecting the third-order correla- 
tion with the fourth-order correlation, the average of the product of four velocity 
fields. Pinally, the fourth-order correlation is approximated using the value 
which the correlation would have if the velocity field were normally distributed. 
The result of these manipulations is 

[(all%) + 2yk2] E(k)  = T(k)  (5 .1 )  

(the energy equation, where T is the transfer term); T is given by a linear, 
integral operation on @ and Y and 

[(a/at)+V(k2+k’2+L+)]Y = 0,  
w i t h k + k ’ + k  = 0. 

(5 .3 )  

The general nature of the zero-fourth-cumulant approximation can be seen 
from (5.1)-(5.3).  The effect of the non-linear term on the transfer process is 
given by the right-hand side of (5 .2) .  It has been set equal to what it would have 
been if the velocity field were Gaussian, and thus becomes quadratic in the 
energy spectrum function. We have emphasized the Gaussian nature of the 
transfer with the subscript 1 [see ( 4 . 5 ) ] ;  the energy spectrum function appearing 
in this role in the equations is the Gaussian part. It is true that non-Gaussian 
processes can have the zero-fourth-cumulant characteristic seen in (5 .2)  but in 
such a case one would have to fix the quasi-normal behaviour as a side condition. 

Consider now the energy equation obtained from the Wiener expansion. This 
can be obtained in a number of ways, all equivalent to lowest order. If the process 
outlined for the zero-fourth-cumulant is followed step by step using the stochastic 
expansion and if the non-linear transfer in (5 .2 )  is approximated by dropping all 
but the first term, U,, in the expansion, then precisely the equations (5.1)-(5.3) are 
obtained with the understanding that in the left-hand side E = E, + E2,  the sum 
of the Gaussian and the lowest-order (quadratic) non-Gaussian contributions t o  
the energy spectrum. In  the right-hand side we have only the Gaussian term, 
El. In such a case, the system is completed by an extra equation for E 2 ,  in effect 
the equation (3 .28) .  The result of integrating these equations is an energy 
spectrum function, E,  which is, from the structure, necessarily positive. 

The zero-fourth-cumulant approximation has an important flaw, as can be 
seen from this discussion. It is essential in a proper treatment to include the time 
rate of change of the non-Gaussian part of E in the energy equation. This is not 
done in the usual treatment of (5 .1) - (5 .3) ,  where a single energy spectrum func- 
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tion is used for E and El. The fact is that the time rates of change of the Gaussian 
term and the lowest-order non-Gaussian term are of the same order, even though 
for moderate times the latter is much smaller than the former. To see this con- 
sider a slightly different method for the derivation of the energy equation, using 
(3.13X) and (3.14s). Construct the energy spectrum function (4.4)-(4.6) by 
multiplying (3.13s) by U(l) and adding to it the result of integrating the product 
of (3.14X) and U2). It is found in this way that aE,/at and aE,/at are of the same 
order. Indeed it can be shown, because of energy conservation, that the integral 
of these two expressions, except for the viscous terms, vanishes; their integrals 
are equal and opposite. 

The flaw in the formulation of the zero-fourth-cumulant approximation just 
discussed is not, however, responsible for the poor results which have been 
obtained from computations (Q’Brien & Francis 1962; Qgura 1963). There is a 
more basic difficulty with these calculations which we now consider. A necessary 
condition for the validity of the zero-fourth-cumulant approximation is that the 
non-Gaussian term remain small compared with the Gaussian term in the 
random process expansion. As outlined in $4,  a convenient way to estimate the 
relative effects of these terms is to form the dimensionless triple correlation, or 
equivalently the dimensionless transfer term. Alternatively, we can use the 
dimensionless time rate of change of the energy spectrum function [see (5.1)]. 
Now consider the zero-fourth-cumulant calculations. The energy spectrum 
function a t  t = 0, examined by Proudman & Reid (1954), is 

E(k,  0) = E , x ~  e-”*, x = k/ko, (5.4) 

where k, established the initial length scale. For this initial value, after t M 1, T 
can be estimated to be less than about 0.2 (see aT/at plotted in their figure 2), 
assuming moderate changes in T during this time. Consider Ogura’s (1963) 
calculation for later times. First, in the present units, Ogura’s time, c, should be 
divided by about 20. Then, for that author’s largest Reynolds number, R, = 28.8 
(square this to find the approximate fluctuation Reynolds number), it is seen 
that aE/at N 1, see his figure 1. Clearly the nearly normal assumption is violated. 

It is interesting that energy spectra as observed for real fluids give much smaller 
transfers. There is a suggestion that for the present theory computations show 
the transfers remain small for larger times. Indeed, the experiments show (see 
figure 3) that the triple correlation, proportional to the transfer, remains very 
small to t = 6, in units of the correlation time. The suggestion is that, if realistic 
initial values for the spectrum function are used, a calculation based on the 
present theory should be valid for a considerable time, probably to ten correlation 
times and beyond. 

An interesting sidelight is that there is a considerable amount of evidence 
showing that to lowest order the present expansion is more stable for computation 
than is the zero-fourth-cumulant approximation. For instance, for Burgers’ 
model equation calculations discussed in paper It it is found that the energy 

t The approach used in paper I is the scalar equivalent of (3.135) and (3.145). However, 
in the latter equation the second-order kernel is approximated by setting it equal to the 
right-hand side; this is an acceptable approximation for small changes (moderate times). 
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spectrum achieves equilibrium at t = 0.1 (time measured in units of the correla- 
tion time) and holds its form a t  least to t = 3.0, where the calculation was ended. 
The corresponding quasi-normal calculation (Jeng, Foerster, Haaland & 
Meecham 1966) for most initial values yielded negative energies and subsequently 
became unstable for about t = 1. Calculation shows that the present expansion 
for the Navier-Stokes equation gives stable spectra at  least up to t = 6, for 
R' = 250. For similar R', Ogura (1963) found negative spectra at  t = 2.5 and 
poor behaviour (oscillation) before that. The improvement in stability is pre- 
sumably due to the distinction between E and El discussed above. 

In  $ 7  we apply the theory developed in previous sections to turbulent flow 
experiments. 

6. Convective transport of a reactant 
Consider the turbulent mixing of a dynamically passive reactant, with a 

possible first-order reaction. We shall refer to the formulation of this problem 
given in paper I11 (O'Brien & Francis 1962). If I' is the concentration of the 
reactant we have for its conservation equation 

The coefficients of fluid viscosity, diffusion (D) ,  and the reaction rate constant 
(C) are assumed constant. Since the mixing is dynamically passive, u is assumed 
known together with its statistics. In  application u would be determined as 
described in $6 1-4. For an example, l' could be the temperature in a suitabIe 
thermal-mixing problem. We formulate a general process which may be in- 
homogeneous and anisotropic. 

First F is statistically dependent on u as a result of mixing. Following the 
representation above let u be given by (2.8), (2.2) and (2.9). Then I' is similarly 
represented, remembering its scalar character, with time implicit : 

(6.2) r(r) = f (r )  + W(r) + I'@)(r) + .... 
- r is the average value of I' and 

W(r) = Gz:( r; r,) H$j(r,) dr, s 
I'@)(r) = Gf&,(r; r,, r2) H~~az( r l ,  r2)dr,dr, SS 

= G@)(r; R,, R,) H(2)(R,, R,). 

As before, sum on Ri when repreated in the same term. Equations (2.8) and (6.2) 
are substituted in (6.1). The quadratic, non-linear term is re-expressed using 
results of paper 11. In  the resulting expression, linear in the functionals, equate 



The Wiener-Hermite expansion for nearly-normal turbulence 241 

coefficients. We find through (at least) terms linear in the second-order functionals, 
E2) and Gt2),t 

a -  
arj 

$pi?(r) = --{uj(r)?(r)+ l!Kr)(r;R’) G(l)(r;R1) 

+ 2!Ky)(r; R‘, R”) GO(,; R‘, R”)}, (6.4) 

a LYG(l)(r ; R,) = - ari {Kf)(r ; R,) f (r) + uj (r) G(l)(r ; R,) 

+ 2Kf)(r; R’) C(,)(r; R,, R’) + 2Ky)(r; R,, R’) G(l)(r; R’)}J (6.5) 

dPG(2)(r;Rl, R,) = -- K~)(r;R1,R2)T(r)+zj(r) G(2)(r;R1,R2) 
arj ” (  
1 

+% [Ki1)(r; R,) G9r;R2) +Kr)(r; R,) G(l)(r; R,)]] . (6.6) 

Equations (6.4)-(6.6) are to be solved for f and G(0 with ii and given. The 
correlation of the fluctuation in r is found following methods already given. 

Let us specialize as in paper I11 to statistically homogeneous and isotropic 
turbulence involving incompressible fluid flow. Let ii(r) = f (r)  = 0 and all 
kernels be functions of the difference variables as in (2.11)J letting (as there) 
U(”) [and y(”)] represent the homogeneous velocity field kernels [and reactant 
kernels]. Then for (3.2) let 

r(l)( r) = yt:(r - r,) Hc:( r,) dr,, s I 
- r,, r - r2) HEjaz(r,, r2)drldr2, 

where y(2) is symmetric in the subscripts 1 and 2. Equations (6.5) and (6.6) 
become 

Equations (6.8) and (6.9) are the appropriate ones for the solution of mixing 
problems to lowest order of non-Gaussianity when the process is statistically 
homogeneous and isotropic. Isotropy is used to simplify the tensors in the usual 
way. The correlation of r is to this order, 

{I?( r‘)r( r”)) = { I?(,)( r ’ ) P (  r”)) + {I?)( r’)P2)(r’’)), (6.10) 

t The contribution of the product of the (Gaussian) fluctuation terms to the mean 
value of the concentration was dropped in equation (2.2) of paper 111. This caused no 
difficulty there for the later work on homogeneous turbulence. 

16 Fluid Mech. 32 
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where, using (6.7), we find with r = r“ - r‘ 
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(I’(1)(r’p’(1)(rr’)) = yz)(rl) yt)(r+ rl)drl, (6.11) s 
s 

(I’(z)(r’)r’(z)(rf’)) = 2 yfja2(rl, r,) y$ia2(r +rl, r +r,)drldr,. (6.12) ss 
If we define, after paper 111, 

G(k2) = ( 2 7 ~ ) - ~  e-ik.r( r(r’) r(r”)) dr, (6.13) 

and then let Gl be the transform of (6.11) [and G, of (6.12)], we have the simple 
relation, 

with 

Gl(k2) = (27~)~y$)(k) y$)*(k) (6.14) 

(6.15) 

As before the Gaussian kernel is the square root of the energy spectrum function. 
The G, is similarly obtained from (6.12) and (6.13). 

In  connexion with the moments there is a remark which can be made. In  
paper I11 it is noted that the non-linear term in (6.1) conserves concentration 
‘energy ’ (I?). For a statistically homogeneous, incompressible process there is a 
more general conservation result. Consider time changes caused by the inertial 
term 

(6.16) 

Multiply this by dF(r) /dI’ ,  where F is any sufficiently well-behaved function and 
average. We find from (6.16) 

= 0. (6.17) 

For instance, the inertial term preserves all moments (P = I’n) in homogeneous 

We discuss the relation of the expansion leading to (6.8) and (6.9) to the quasi- 
normal approximation given in paper 111. The remarks of $ 5  of this paper apply 
with little modification. We shall not reproduce here the complete set of equations 
of paper I11 ; the reader can refer to that paper for details. The authors of I11 
find, proceeding with the usual quasi-normal approximation, 

{ ( a p t )  + [ 2 ~ k z +  ~C])G(P, t )  = ~ ( l e 2 ,  t )  (6.18) 

flow.? 

and the transfer is given by an integral over L determined from 

{ (ap t )  +f}~(k, v, pi, t )  = 2kyi  -py #1(~’,) [c1(v2, t )  - G,(P, t ) ]  (6.19) 

t The Burgers’ model of paper I also has this property, for its inertial term permits a 
proof like (6.17). Indeed the inertial term of the Navier-Stokes equation for the same 
reason not only conserves energy, u2, but conserves any function of u2. All of these remarks 
assume statistical homogeneity. 
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with $, defined implicitly by, 

$ j k ( k )  = $ 1 ( k 2 ) q k ( k )  (6.20) 

and q5, the Fourier transform of the (given) second-order velocity correlation. 
The right-hand side of (6.19) is obtained through the use of the quasi-normal 
approximation. It has the characteristic quadratic form of this method. We have 
added the subscript 1 to the spectral quantities in the transfer. 

Consider now the result of the treatment of the present paper when applied 
to the moment equations of paper 111. Equation (6.18) is unchanged, except that 
G is the sum of the Gaussian term G, [see (6.14)] and the lowest-order non- 
Gaussian term G,. The transfer term so obtained is the same as that from (6.19), 
taken from paper 111. It is emphasized that the functions in that term are how- 
ever the Gaussian ones. The difference between these two formulations, for 
calculating the spectrum functions, is slight in many situations. For the validity 
of either method we require that the transfer term remain small in dimensionless 
form. Otherwise it would be necessary to take into account at least one higher- 
order term in the Wiener expansion if the calculation is to be valid at every 
step. The negative energy spectra obtained by O’Brien & Francis occur when 
this basic criterion is violated. To see this, estimate the transfer term, the time 
rate of change of G, from their figure 1.  There it is found that initially the transfer 
term is small and the time rate of change correspondingly small. But at  later 
times, see changes in going from T = 1-02 to T = 1.98, the time rate of change of 
G is of order unity. Hence the non-Gaussian term is of the order of the Gaussian 
one and the simple use of the lowest-order terms in Wiener expansion, approxi- 
mated by the quasi-normal hypothesis, is no longer valid. In  fact a t  slightly 
later values of time the quasi-normal spectrum function becomes negative, 
at a wave-number of about 1.3. For an energy spectrum function more nearly 
approximating the physical one initially [the authors of paper I11 used 
$(k2,  0 )  = (3nf)-1k2e-kz] the calculation might be reliable to much Iater times. 
But here again the expansion of the present paper is more complete and probably 
simpler and, as suggested at the end of $5, more stable. 

7. Comparison with experiment 
In  this section we describe calculations for homogeneous and isotropic turbu- 

lence. The calculations are based on the truncated equations (3.13X) and (3.148). 
These equations constitute an initial value problem. The initial values are set 
by wind tunnel experiments. Calculated values are then compared with flow 
measurements farther downstream. 

Before discussing the calculation and experiments, consider a hallmark of the 
truncated representation. All of the moments of the velocity field can be ob- 
tained, to lowest order, from the two lowest-order kernels. For instance, moments 
of the field at any number of points can be so expressed. One way to state the 
restriction of the truncation is the following. Any one-argument characteristic 
of the fields, e.g. the energy spectrum function, together with any other charac- 
teristic which is a function of two arguments, e.g. the triple-velocity correlation 
function taken at three points, is sufficient to determine all other characteristics 

16-2 
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of the velocity and pressure fields. Thus truncating the random expansion after 
the second term amounts to asserting that all characteristics of the fields can 
be approximately expressed as functionals of the two low-order velocity correla- 
tions. Analogous statements can be made for higher-order truncations. 

Consider an incompressible fluid which initially is in a state of statistically 
homogeneous and isotropic flow. To be precise we should define an ensemble of 
such flows with these properties. The flow is then allowed to decay, force-free. 
We wish to find the statistical characteristics at later time. As usual, we use wind 
tunnel experiments to approximate this ideal flow problem. As fluid passes the 
grid in the tunnel, it comes to a statistical state which corresponds to the initial 
state of the idealized flow. Then, as the fluid moves downstream, it decays some- 
what like the fluid in the idealized experiment. It is customary to treat the 
distance downstream as proportional to the time following the initial disturbance. 

We need kernel initial values (our initial time is t = 1.5 or z / M  = 30), 

U$)(r; t = 1.5) and U$L(rl, r,; t = 1.5). (7.1) 

Hence, a t  t = 1-5 we need two characteristics of the flow, one a function of one 
variable and the other a function of two variables. For the first we use the energy 
spectrum function measured by Stewart & Townsend (1951) at x /M = 30. The 
second is harder to find. It could be the triple correlation a t  three points. That 
characteristic would be very interesting for this theory but is not available. We 
content ourselves with the triple correlation at two points measured in a similar 
experiment by Stewart (1951). Then U@), a function of two space variables, is 
not fully determined initiallyby this measurement (a function of but one variable). 
We need a restricting hypothesis and use one of a type from which good results 
for Burgers' model equation were obtained in paper I. We suppose that initially 

U$21,2(kl, k,; t = 1.5) = ~ia,E&,8(kl+ k , ) U ~ ~ ~ ( k , ;  1-5)U&k2; 1-5). (7.2) 

The constant a, is found by adjusting the theoretical initial triple correlation of 
(4.11) and (4.14), using (7.2) for the initial value of U@). The constant a, is 
adjusted to fit Stewart's experimental values a t  x/N = 30. 

One might at  first wonder if this attempt to fit the initial state of the turbulence 
could be successful. We have the function U, (k; t = 1.5) and the single parameter 
a,, to be adjusted by trial and error to fit the spectrum function E(k ,  1.5) and the 
(normalized) triple correlation h(r) a t  t = 1.5. The initial fit is fairly good, as can 
be seen in figures 4 and 5. In  view of the experimental and theoretical uncer- 
tainties it was decided not to carry the initial fitting process beyond the stage 
shown. We use a, = 5 4  here. The dissipation length h is given by 

h2 = c - &"(O)/&(O)l+, (7.3) 

where &(r) is the longitudinal velocity-correlation (note Q(0) = u2). In  effect a 
single parameter a, has fitted the initial value of a whole function, h(r, t = 1.5). 
This seems to indicate that the actual value of the non-Gaussian part, U@), 
must be approximately given by (7.2) a t  the initial time. A measurement of the 
triple correlation at three points would be very interesting as a check on this 
hypothesis. One reason for the success of (7.2) may be this: we see in (3.146') ' 
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that, if a process is initially purely Gaussian, then for moderate times (say to 
t = 0.5) the non-Gaussian part is approximately the product of the time and the 
right-hand side, i.e. the same as the hypothesis (7.2). In  figure 4 we see that initially 
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FIGURE 4. Initial El ,  Gaussian part and E,, non-Gaussian part. RM = 5300 (data from 
Stewart & Townsend 1951). 
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FIGURE 5. Initial triple correlation h(r) = - ( U ~ U ’ ~ ) / ~ U ~ ,  z’ = z+ 5M, RM = 5300 
(data from Stewart 1951). 
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the total lowest-order, non-Gaussian energy (1 E,dk) is 10-20 % of the Gaussian 
part, consistent with the assumption of nearly normal flow. The two spectra 
become the same size for wave-numbers equal to a few times the energy-spectrum- 
maximum wave-number. The assumption is that, though this is so for these 
larger wave-numbers, the next highest order, E3 (formed from the process cubic 
in the white noise function) is negligible compared with the two lower-order 
ones. The expansion is such that it is in principle possible to check this assump- 
tion by direct computation [see (3.15)]. 

We now construct the equations used in the numerical integrations for the 
determination of the turbulence characteristics at  later time (after t = 1-5). 
Integrate (3.148) in time [use (7.2) for the initial value of U@)] and substitute 
the result for the second kernel in (3.138). The angular integrals can be performed 
and we find for Ul the equation 

(: - + vk? ) Ul(iil, t )  = - (2n)- 3 k5/0m ax { dt‘Ul(kl, t ’) 

+ [(z6/8b) - (5 /8b )  + (5/8b2)  - (x/4b3) - ( l/2b3x)] sinh 2bz 

+ [(x4/4b) - (z2/4b) + ( l/b2) - (~‘/2b-$)] cash 2bx. (7.5) 

The Gaussian part of the energy spectrum, El, is obtained by substituting U, 
found from (7.3) in (4.5). Once Ul is found, the kernel U@) is obtained by inte- 
grating (3.148). The non-Gaussian part of the spectrum, E,, is found by sub- 
stitution in (4.6). The computations were performed on the University of 
Minnesota Control Data 1604 digital computer. It should be emphasized that 
the fields are calculated from their initial values without the use of adjustable 
parameters. The initial fluctuation Reynolds number used in the calculations 
was 250 (about the same as that of the experiments). There is an important 
energy check on the correctness of the calculations. We first obtain E(k)  using 
(4.4)-(4.6) by multiplying (3.138) by U(l) and adding to it the integral of the 
product of (3.14~9) and U@). We integrate E to construct the total energy loa E ( k ) d k .  It is of course found that the transfer term drops out (conservation 

of energy). The Taylor energy relation follows (see Batchelor 1953), 

[El(k)  + E,(k)] dk = - 2vI; k2(El + E,) dk. (7.6) 

This relation can be used as a check on the numerical results. For the work re- 
ported here (7.6) was fulfilled to within 10% initially; at t = 6 it was fulfilled to 
within about 30 yo. Evidently (7.6) depends strongly on the large wave-number 
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FIGURE 6. Energy spectrum downsteam (data from Stewart & Townsend 1951). 
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behaviour of the spectra, in the dissipation range. The results could be improved 
by taking smaller time steps. We used varying time steps. A small step, 0.005, 
was needed initially. Later in the calculation this was increased progressively to 
0.05. It was possible to make the step in wave-number space larger: Ak = 0.1 
was used. 

Calculated results at distances of z / M  = 60, 90 and 120 [t = 3, 4.5 and 61 are 
shown in figures 6 and 7. The calculation is of course extended far beyond a 
perturbation range in time (to t = 6). The results for the energy spectrum shown 
in figure 6 are fairly good, though not quantitatively perfect. (Later values of the 
non-Gaussian part of the spectrum are also shown in that figure.) The peak of the 
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FIUURE 8. Initial-period energy decay. 

spectrum has moved correctly to somewhat larger wave-numbers at  later times. 
Of course at  z / M  = 30, the experimental and initial theoretical curves were 
chosen to correspond exactly. Probably the largest significant discrepancy is 
that of the differing slopes at the largest wave-numbers shown. This may indicate 
that the initial value of the non-Gaussian part of the process, measured by a,, 
should be larger (as may be seen in figure 5) .  

The normalized triple-correlation hfr) is shown for various distances down- 
stream in figure 7. The transfer function and skewness factor can be obtained 
from these curves if desired. However, the triple correlation shows the general 
trend of these characteristics. The results shown in figure 7 are at least 
qualitatively encouraging. The maximum of the triple correlation increases a t  
later times (greater distances downstream) in the experiments. The computation 
shows this characteristic as well. This increase is equivalently an increase in the 
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non-Gaussianity of the flow process. The growth of the triple correlation, that is, 
of the non-Gaussian part of the flow, deserves further comment. In  the usual 
turbulence experiment and in many applications, this characteristic does not 
become large. However, in idealized calculations it is possible to continue for 
large enough times so that IE,dk approaches JE,dk. In  such a situation, assum- 
ing the process does not damp out fist ,  there is little justification for truncating 
the Wiener expansion after two terms. Orzsag & Bissonnette (1967) have 
demonstrated such a failure of the nearly-normal truncated expansion in situa- 
tions ultimately requiring higher-order expansions. The fit in figure 7 is not 
perfect, but fairly good, making allowances for possible, systematic errors in 
these early experiments as well as for departures from the idealizing assumptions 
(statistical homogeneity and isotropy). 

We show the calculated initial energy decay in figure 8. The expression plotted 
in that figure has been found to be approximately linear in some experiments 
(see Batchelor 1953). 
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